三峡工程施工期安全监测与信息施工实践
图1 f1050断层变形监督布置图
2.2.2 二闸首南坡f1239断层锚固工程
二闸首南坡因f1239断层切割所形成4019m3的较大块体,配合加固处理措施,在该块体共埋设锚索测力计9台(图2中SC*、D*),多点位移计测孔2个(图2中MD*),另在断层上盘顶部布设1个变形监测标点(图2中TP/BM*)。从近期f1239部位的安全监测成果分析看,在没有新的外作用力(如爆破)时,该块体变形将趋于稳定。
2.2.3 断层上盘顶部变形监测
f1239断层上盘顶部变形监测点向边坡方向位移与开挖过程线见图3.a。由图可以看出,该部位边坡变形明显受闸室开挖影响,但其变形符合一般规律。初步认为f1239断层切割的大型不稳定块体目前处于稳定状态。
2.2.4 水平多点位移计监测
位于f1239部位上部的MD13GP02孔的变形过程线(图3.b),表明各测点的变形均在收敛,以1999年1月4日为基准,1999年9月13日的向边坡方向的变形值最大为0.8mm。
图2 f1239断层监测布置图
这表明f1239部位上部的结构面有闭合的趋势。从位于f1239部位下部的MD14GP02(X=15389.5m,Y=157.5m)孔的变形过程线看出,该孔所有的测点在1999年3月15日受下部爆破的影响,结构面张开,指向闸室的变形值增加,随后的测试亦表明,各测点的变形趋于稳定。这两个测孔变形测试结果基本反映出该块体区目前处于稳定状态,可与锚索测力计成果互相验证。
2.2.5 锚索测力计监测
通过测值和图3.c分析,位于块体上的监测锚索锚固力值呈现明显的波动状态,这与永久船闸一期的监测锚索锚固力曲线较平稳有明显区别。其主要原因是这些测试锚索都安装在块体区,而这些块体区断层较多,裂隙发育,锚索锚固力很容易受到外界气温及降水的影响。因外界气温及降雨频繁的变化,亦导致锚固力频繁地波动。1999年度锚固力的波动范围在60~130kN之间。这表明,在没有强外力(如爆破)的影响下,锚索的锚固力已基本稳定下来。
监测锚索的最大与最小锚固力,在每年度出现时间比较一致。一般在每年2月出现最大锚固力值,是因为此时外界气温较低导致钢绞线收缩,且由于降雨的因素导致结构面润滑,抗剪参数及内摩擦角减小,均导致锚索的承载力增加。而最小锚固力一般在每年7月份出现,这是因为此时外界气温较高导致钢绞线松弛,且由于天气晴朗导致结构面干燥,抗剪参数及内摩擦角增大,由此导致锚索的承载力减小。
2.2.6 二闸首中隔墩北侧倒悬块体处理工程
中隔墩二闸首北侧岩体受不利结构面影响,于1999年4月出现局部跨塌,方量约2656m3,使结构面上部岩体形成约3400余m3的倒悬块体,对是否保留该块体,业主、设计、监理和施工单位各方意见分歧较大。
为迅速了解该倒悬块体的变形状态,以制定倒悬块体的施工处理方案,对位于块体顶部的监测点TP136GP01进行了加密观测。初期每天1次的观测成果,在当天下午就以简报形式报送到有关部门。由于观测结果并没有反映出该块体的异常变化,从而为设计等有关部门制定倒悬块体的施工处理方案提供了唯一的、最重要的基础资料。
在倒悬块体锚固施工方案制定后的施工过程中,每2天1次的观测结果,仍未反映出该块体的异常变化,保证了施工处理方案的顺利进行。
随后在对倒悬块体下部北槽的保护层岩体进行开挖过程中,又对监测点TPl36GP01每天观测1次。由图4可以看出,在1999年9月17日,下部爆破开挖第1天,测点TP136GP01Y方向出现1次突变,累计位移量值从2.38mm递减至0.44mm,随后位移值稳定在0轴附近波动,近期虽有所回弹,但累计位移量值始终保持在较低水平。从而说明该倒悬块体在经过锚固处理和控制开挖爆破药量等措施后,处于稳定状态。
从中隔墩二闸首北侧岩体受不利结构面影响出现局部跨塌,制定处理错施,到倒悬块体锚固施工和其下部保护层岩体开挖的全过程,历时5个多月,监测人员共完成79测次,由于及时报送监测数据,保证了整个施工过程的有序进行。
图3.a f1239断层上盘顶部变形监测点位移过程线图
图3.b f1239部位两孔水平多点位移计位移过程线
图3.C f1239锚索测力计锚固力测值与损失率过程线图
图4 二闸首中隔墩北侧岩体变形监测点位移过程线图
3 结束语
5年多来的安全监测实践表明,监测工作除在施工中发挥重要作用外,监测成果还可以为以下几个方面服务。
3.1 优化设计
在临时船闸与升船机高边坡开挖期间,北坡129m马道出现裂缝宽达10mm,对此各方都十分重视,设计拟采用预应力锚索来加固边坡,且准备施工处理,随后结合该部位的实际地形情况,监测成果反映边坡变形量很小,且测值趋于稳定,说明山体边坡稳定性状良好,该结果被设计采纳,减少处理工程量,为工程建筑节约了投资。
通过对船闸高边坡岩体爆破、松弛范围的监测,使边坡锚杆深度有据可依,原设计方案主要为系统锚杆,后结合监测资料加设了随机锚杆,使边坡支护加固更有针对性,更具合理性。
3.2 工程施工
1996年8月19日,升船机北坡5+083附近,钻孔测斜仪IN05GP03位移量异常,为进一步分析资料的连续性与可靠性,将该监测孔的数据绘制了位移深度曲线,发现孔深26m处有一滑动面,位移速率有快速增加趋势,随即进行了现场巡视,发现了事故隐患,并将此情况及时通报给了有关单位,避免了安全事故的发生。
1997年7月11日,在通航建筑物下游隔流堤施工期变形监测时,监测点月位移量突变,水平位移42.9mm、下沉119.9mm。现场巡视检查发现监测点附近产生了多条纵向分布的裂缝,靠江边侧还有约10m长的塌陷区,航道侧有浑浊水渗出。险情通报有关单位后,及时采取相应的工程抢险措施,一方面往下游航道内冲水平压;另一方面向博鱼APP下载侧抛填石渣压住相应的坡脚,迅速排除了险情,确保了施工期隔流堤的安全。
由于永久船闸工程地下输水洞开挖先于地面槽挖完工,为了解地面爆破对输水洞断面上的振动影响,进行了爆破振动影响监测。成果说明,在当时条件下,顶拱边墙底板的最大振速分别在9~10、4~7及4~5cm/s范围,即顶拱最大,边墙次之,底板最小。按现有施工规范建议的新浇混凝土安全控制标准,为确保混凝土浇筑质量,只有底板具备混凝土浇筑的可能性。显然,监测成果对于当时正确指导施工,确保工程质量起到了重要的作用。
3.3 科学研究
三峡工程从开工开始,许多科研项目随之而进行,如三峡船闸高边坡施工期安全监测快速反馈系统技术研究;三峡大坝及坝基施工期的正反分析模型研究等项目。无论是保障安全确定监控指标课题,还是指导施工改进工艺课题,都离不开监测资料的支持;反之,科研项目的开展无疑会提高监测理论水平。从某种角度上讲,三峡工程带动了相关科研发展,安全监测信息资料为发展创造了条件。